
SOLUTION OF A TWO-DIMENSIONAL EQUATION OF NONSTATIONARY HEAT 

CONDUCTION FOR ORTHOTROPIC CYLINDRICALLY BOUNDED MEDIA 

V. P. Kozlov and V. N. Lipovtsev UDC 536.21 

Analytical relationships are presented to determine two-dimensional (2-D) nonsta- 
tionary thermal fields in a bounded orthotropic cylinder for various boundary con- 
ditions. The solution obtained generalizes a wide class of eighty boundary-value 
problems of nonstationary heat conduction in studies of heat exchange in the bodies 
being considered. 

The proposed solution of a two-dimensional problem of nonstationary heat conduction for 
the bounded orthotropic cylinder for different combinations of boundary conditions of the 
first, second, and third kind is based on the following properties of the infinite, integral 
Laplace transform: 

i. If i -I [~ (s)] = f (~ and i - i [ ~  ~)] = ~ (~), then i -~ [~ ~ Jr A)] = exp (--A~) f (x); 
T 

2. L -~ [~ (s) �9 (s)] = j" [ (~) ~ (x - -  ~) d~. 
0 

It is known that the solution of the one-dimensional (l-D) problem of nonstationary heat 
conduction for an unbounded plate with the use of the inverse transform is written in the form 
[I] 

~'I-D(z, s ) = T ( z ,  s) To _ A c h  .] s q--Bsh ] / 7  (1) 
V U  ' 

and the solution of the two-dimensional nonstationary heat conduction problem for a bounded 
orthotropic cylinder with the use of the Laplace--Hankel inverse transform is of the form 

~2-D(p, z, S)=TZ-D (p, z, s) T--~ --A*ch(~/z-~-I/aTpZ-ksl + 
s \ v a ~ }  (2) 

+ B* sh ( z -[/ a~P2 q- s ) q- cp (p' 

where r  s )  i s  a f u n c t i o n  depend ing  on t h e  boundary  c o n d i t i o n s  on t h e  l a t e r a l  s u r f a c e  o f  t h e  
c y l i n d e r ;  a z and a r a r e  t h e  t e m p e r a t u r e  c o n d u c t i v i t i e s  in  t h e  d i r e c t i o n  o f  t h e  z- and r - a x e s ;  
To = const is the initial temperature of the solids under consideration; p and s are the pa- 
rameters of the finite integral Laplace--Hankel transform [i, 2]. 

By considering solutions (i) and (2), it is easy to note that the value of the complex 
/arp2 + s for the two-dimensional case (at ~ = az) is different from the value of the complex 

for the one-dimensional case. 

Consequently, if the solution is known for the one-dimensional problem of heat conduction 
in an unbounded plate of thickness 2h for the given boundary conditions on its surfaces, then 
it is not difficult to obtain a solution of the two-dimensional problem for a bounded cylinder 
(disk) of diameter 2R for the same boundary conditions on the end planes and for the Specific 
boundary condition on the lateral surface of the cylinder. For boundary conditions of the 
third kind on the end and lateral surfaces of the cylinder the heat-exchange-coefficients in 
the general case can be diffeent (~h ~ c~R). 

If we represent the combinations of boundary conditions as they are schematically depicted 
in Fig. i, then the one-dimensional solutions can be designated as @~-D(z, ~) (v = 1-6) and 
the two-dimensional solutions, 0v,B(r ,2-D z, T) (D = i, 2, 3), with the values of v and ~ being 
assigned the following meaning: 
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Fig. I. A schematic representation of combinations of the bound, 
ary conditions on the surfaces of an unbounded plate and a bounded 
orthotropic cylinder. 

v = i, 2, the source of heat of constant specific intensity q0 is absent of acts res- 
pectively, in the plane z = 0, and the end planes (z = • are maintained at a constant 
temperature T c different from the initial temperature To; 

v = 3, 4, the source of heat of constant specific intensity q0 is absent or acts, re- 
spectively in the plane z = 0, and the end surfaces (z = • exchange heat according to New- 
ton's law with the ambient medium at the temperature T c = TO with the heat-exchange coefficient 

= 5, 6, the source of heat of the constant specific capacity q0 is absent or acts, re- 
spectively, in the plane z = 0, and the end surfaces (z = • are heated by the constant tem- 
perature flow of density q ~ q0; 

= i, 2, 3, respectively, on the lateral surface (r = R) of the orthotropic cylinder the 
constant temperature Tc~ r T c r To is maintained; heat is exchanged according to Newton's law 
with a medium having the temperature Tc~ with the heat-exchange coefficient ~R ~ ~h; a source 
of heat of constant specific capacity q~ ~ q ~ q0 acts. 

We assume that the origin of the cylindrical coordinates is located in the center of the 
cylinder, and that for the unbounded plate the plane z = 0 is in the middle of the plate. The 
initial temperature distribution of the bodies under consideration both in the one-dimensional 
case and in the two-dimensional case is uniform: T o = const. The considered solids are assumed 
to be orthotropic. 

From the concept of anisotropy it follows from the body is assumed to be orthotropic if 
the spatial variation in its thermophysical properties is strictly bounded in the direction 

720 



T
A
B
L
E
 

i
.
 

V
a
l
u
e
s
 

o
f
 

F 
B

 
a
n
d
 

H
p
 

a
n
d
 

C
h
a
r
a
c
t
e
r
i
s
t
i
c
 

E
q
u
a
t
i
o
n
s
 

f
o
r
 

C
a
l
c
u
l
a
t
i
n
g
 

t
h
e
 

R
o
o
t
s
 

6 
k 

~
=

1
 

R
 ~

2
 

~
t=

3
 

V
al

ue
s 

of
 

v
=
l
 

v
=
2
 

~
=
4
 

v
=
5
 

v
=
6
 

C
h
a
r
a
c
t
e
r
-
 

i
s
t
i
c
 

e
q
u
a
t
i
o
n
 

f
o
r
 

R
 ~

 (T
o 
-
-
 T

o)
 

~ 
a,

, 
(r

* 
- 

To
) 

R
 2

 (
T

o 
-
-
 T

o)
 

6~
 

ar
 (

T
c ~

 -
-T

o)
 

R
 2

 (
T

o 
--

 T
o)

 

5~
 

ar
 (

rc
* 

--
 T

o)
 

R
 ~

 (
T

o 
-
-
 T

o)
 

0 

H
 p

~ 

T
*

 -
-
 

To
 

T
*

 
-

-
 

To
 

Tc
 ~ 

-
-
 

T 
O

 

Tc
* 

-
-
 

To
 

r~
 

6~
 

ar
 (

T
c*

 -
- 

To
) 

R
 2 

(T
o 

-
-

 
T

o)
 

8~
 a

~ 
(r

* 
- 

To
) 

R
 z 

(T
c 

-
-

 
To

) 

ar
 (

T
* c 

--
 T

o)
 

R 
z 

(T
c 

-
-
 T

o)
 

6~
 

ar
 (

To
* 

To
) 

R
 2

 (
T

c 
-
-
 T

o)
 

H
p,

 

T
c ~

 -
- 

T 
O

 

T
c ~

 -
- 

T
o 

T
c ~

 -
- 

T
o 

T
r ~

 -
- 

T
o 

FL
t 

ar
q*

Sh
Jo

 (
Sh

) 
Lr

R
 (

T
c 

--
 T

o)
 J

1 
(6

h)
 

ar
q*

6h
do

 (
6h

) 

L
rR

 (
T

o 
-
-
 T

o)
 J

1 
(6

h)
 

ar
q*

6h
Jo

 (
6h

) 

)~
rR

 (
T

o 
-
-
 T

o)
 J

1 
(6

h)
 

�9
 ar

q*
6h

Jo
 (

6k
) 

L
rR

 (
T

o 
--

 T
o)

 Y
l 

(6
h)

 

T
c ~

 -
- 

T
o 

To
* 

--
 T

o 

J0
 (

6h
) 
= 

0 
f
o
r
 
a
l
l
 

V
 a

n
d
 
~ 

= 
I 

T
*

 
--

 
To

 

T
*

 c 
--

 T
o 

J,
o(

6h
) 

6h
 

di
 (

6h
) 

-
-

 
B

iR
 

fo
r 

al
l 

v 
an

d~
t 

= 
2 

J~
 (

6h
) 

=
 0

 

H
~t

 

q*
R

Jo
 (

6h
) 

X~
6k

J~
 (6

D
 

q*
R

Jo
 (

6h
) 

X
r
6
h
J
i
 

(~
h)

 

q*
 R

Jo
 (

6h
) 

q*
 R

Jo
 (

6h
) 

~r
Sh

J1
 (

Sh
) 

q*
R

Jo
 (

~k
) 

q*
 R

do
 (

6~
) 

~.
~6

aJ
1 

(6
b.

) 

f
o
r
 
a
l
l
y
 
a
n
d
 
~
=
3
 

b~
 



coinciding with the unit vectors of the selected orthogonal system of coordinates. In this case 
we consider cylindrical anisotropy, i.e., only in the direction of the r- and z-coordinates do 
components of heat conduction (X r and Xz), temperature conductivity (ar and az) , and temper- 
ature activity (b r and b z) differ one another. Specific heats in the direction of the r- and 
z-coordinates are assumed to be equal, i.e., CrY z = Czy z. From the last assumption it is not 
difficult to derive the following relationship between the thermophysical characteristics 

for an orthotropic cylindrical body: 

~ r  aY = ,- , (3)  
)~z az 

i.e., the ratio of the heat conduction components for an orthotropic body in the direction 
of the cylindrical r- and z-coordinates is equal to the corresponding ratio of the temperature 

conductivities in the same directions. 

Thus, taking account of the foregoing, the general solution of a two-dimensional nonsta- 
tionary equation of heat conduction for an orthotropic bounded cylindrical can be written 

in the form 

Ov,~ (r, z , ~ =  Ak exp R2 J o 

- -Fp  exp - - 6 ~ - - ~  , , (_ l )v(Z,~)d~+ ri'. l ' e x p  - - 6 ~ - - ~ . -  / , 
0 . v - -  2 2 

(4) 

where 

A~= 
2Jo (6h --~)J~ (6k) 

8h [Sg (6h) -1- J~ (6h)l 

(5) 

The multipliers F~, H~ and the characteristic equations for calculating the roots 6 k, de- 
pending on the boundary conditions on the lateral surface of the cylinder, are given in Ta- 
ble I. Solutions of the one-dimensional problems for v = I, 3, and 5 are given in [i], while 
solutions for v = 2, 4, and 6 have been obtained by the authors: 

1-D [ OI (~', x ) = ( T c - - T o )  1 -  

,7. 

( 2, ,  
n=1 ~.sinlz~. exp --~n~] 

(6) 

(~n are the roots of the equation cos ~n = 0); 
g 

| 2 c o s ~  h 

~-%t, ~)= O,~-D( ~, ~)+ --~-- I -h t~ 

r ~ azx \ l 
• exp ~--  I~.,-"~--) J 

(~n are the roots of the equation cos ~n = 0); 

X 
(7)  

' - ~  I Os "(z, "~) ----- ( T e - -  To) 1 - -  

z 
2 co s ~,~ ~ sin ~. 

t~,~ + cos ~,~ sin ~,~ 

a~ '~ 
exp (-- 1.~ "--~-] 1 (8) 

(Bn are the roots of the equation cot ~n = ~n/Bih); 
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:t-D 
O~ (z, %.) 1 -D 

Oa " (z, qo h [ 1 z 
9 + ~ 1 + Bib h 

2 cos ~,~ __z 
h 

E ~=~ ~ (~,~ q- cos Iz~ sin Ix.) 
exp 

- 7 - / 1  \ 

(~n are the roots of the equation co t  ~n = Bn/Bih); 

I-D qh [ a :  hZ-- 3zZ y__ a 
05 (z, "~) = ~ h ~ 6h z + 2 ( - -  1)"+~• 

Z 
C08 bl, n T 

2 exp 
h~ / J  

(9) 

(lo) 

(gn are the roots of the equation sin ~n = 0); 

1-D qoh [ az~h ~ o~'~Cz, ~)= o~ (z, 9 + - - f f f  
[ 

+2 2.a (-- 1y+~ 

(~n are the roots of the equation sin ~n = 0). 

hZ - -  3 (h - -  z) z + 
6h 2 

(-  '/] (n) 

When the thermophysical characteristics on the z-axis are equal to those on the r-axis, 
i.e., kz = Xr and a z = at, Eq. (4) represents a generalized solution of the two-dimensional 
nonstationary equation of heat conduction for an isotropic cylinder. 

It should be noted that from the obtained generalized solution (4) eighty particular 
solutions are derived for orthotropic and isotropic cylindrical bounded, semi-bounded, and 
unbounded (plat~, cylinder) bodies. 

As an example of a practical application of the obtained solution (h) we find the solu- 
tion of a two-dimensional problem of nonstationary heat conduction for a bounded orthotropic 
cylinder for the following boundary conditions. 

The initial temperture is T 0. On the end surfaces, the constant temperature T c $ T0 is 
defined, while on the lateral surface, the temperature To* ~ T c ~ T0. In the plane z = 0, 
there acts a source of heat having constant specific power q0 = const. 

It is required to determine a two-dimensional temperature field T(r, z, T). By applying 
solution (4) to the case ~ = z, p = i, we obtain 

k=l 
Z 

~=~ ~ s m  ~,~ '~--g~/  + ~ t h 

Z 
2 cos px,~ 

k-  o-zT-/ + 

i / __ ~2 exp [ k 
0 

ar qoh 

Z 

S 2 cos ~,, -~- 
a, ~1 {(T~-- To)I1 - - - -  x 

Z 

h E 

.t T$ - -  To exp 
Tc -- To 

0 

Z 
2 cos/~ 

2 X 

a , ~ )  X 

• exp 

• exp 
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•  1 - -  exp - - p 3 - ~ - ~  d~ -}- (r* - -  ro) l - - e x p  k RZ ] | ] ,  ( 1 2 )  
,,=t F,,. sin p.,i 

where 6 k are the roots of the equation J0(6k) = 0; Bn are the roots of the equation cos Bn = 0, 
ie., ]an = (2n -- 1)11/2. 

After integrating and arranging like terms, Eq. (12) assumes the form 
z 

o . . , ~ ( i ,  z ,  , ) =  = A~+ (7 '+ - -To)  I - - 2  = (I._} ,,,~ IC~,K~Z,  p,,+ sin p,,++ ~ ) 
\ ~ , 

z 

- -  2 (Tc - -  To) Z 2 o exp - -  62 a,, p2 a~ " k + "~ + 
,~=l (6kK,~Kk +~x~) sin ~ ~ -  n -~- 

z 

Z J q~ 1 z 2 4. Ah [ ~ h ( 2 ) 
~,=~ = 1 + ~--~/<-j~!ArRR 2 ~ 

Z �9 

| COS ~t n - -  

.  xp- + 
= k,~,, R + ~ 

z 

q-~n = x ' ( 1 3 )  
+ Ah 2 i T ~ - - T o )  ~ • 1 - - e x p  - -  6~ az 

B. sinB~ ~ 1  n=* , 1 + 6--~k a a R J  

w h e r e  K a = a r / a  z ,  K R =  h / R ,  pn a r e  t h e  r o o t s  o f  t h e  e q u a t i o n  cOS Bn = 0 ;  6 k a r e  t h e  r o o t s  o f  
t h e  e q u a t i o n  J 0 ( 6  k )  = 0 ,  A k i s  d e f i n e d  by  Eq.  ( 5 ) .  

Letting k r = k z = X, a r = a z = a and Tc* = To, we obtain an expression for the temperature 
field of an isotropic bounded cylinder, given in [2], assuming there Bi h + ~. For R + ~(Tc*= 
T 0) from (13) we obtain a one-dimensional solution for:an unbounded plate 02(l-D)(z, ~). 

Thus the obtained two-dimensional solution (4) describes a nonstationary temperature 
field at any point of a bounded orthotropic cylinder 2h is height and 2R in diameter, if 
different combinations of boundary conditions of the first, second, and third kind are real- 
ized on its boundaries (end surfaces and lateral surfaces); an internal source of heat of 
constant intensity can act in the central plane of the cylinder (z = 0). 

An advantage of the given solution (4) is that for orthotropic cylindrically bounded 
media the final result in defining a two-dimensional temperature field T(r, z, ~) is achieved 
by means of a simple integration of one-dimensional nonstationary solutions for an unbounded 
plate, and there is no need to solve each time the corresponding problem of nonstationary 
heat conduction for the bounded orthotropic cylinder (to pass the stage of the definition 
of the constants of integration for the equation of heat conduction) for the boundary condi- 
tions given in Fig. I. 

NOTATION 

s, parameter of the indefinite integral Laplace transform; p, parameter of a finite in- 
tegral Hankel transform; 0vi-D(z, ~) and 8v,B2-D(r , z, [), excess temperatures of the one- 
and two-dimensional nonstationary heat conduction problems for an infinite plate and a bounded 
cylinder (disk); r, z, coordinates; T, time; ar, a z, %r, lz, thermal conductivity and heat 
conduction along the directions of cylindrical coordinates r and z; =h and ~R, the heat-ex- 
change coefficients on the end and lateral surfaces of the cylinder; ~h(Tc), ~R(Tc*), the 
boundary conditions of the third kind (Newton's law) on the end and lateral surfaces of the 
bounded cylinder at the boundary with the media at temperatures T c and Tc~ , respectively. 
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